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Measurement Decision Theory

Lawrence M. Rudner
University of Maryland, College Park

This paper describes and evaluates a decision theory measurement model that can
be used to classify examinees based on their item response patterns. The model has
a simple framework that starts with the conditional probabilities of examinees in
each category or mastery state responding correctly to each item. An overview of
measurement decision theory and its key concepts are presented and illustrated
using binary classification (pass/fail) test and a sample three-item test. The research
presents an evaluation of the model by examining: (1) the classification accuracy of
tests scored using measurement decision theory; (2) different sequential testing
procedures by comparing classification accuracy against that of the best case item
response theory scenario; (3) the number of items needed to make a classification;
and (4) the number of examinees needed to calibrate measurement decision theory
item parameters satisfactorily. The research shows that a large percentage of
examinees can be classified accurately with very few items and that surprisingly
few examinees are needed for calibration.

Classical measurement theory and item response theory are concerned primarily with rank

ordering examinees across an ability continuum. Those models are concerned, for example, with

differentiating examinees at the 90th and 92nd percentiles. But one is often interested in classifying

examinees into one of a finite number of discrete categories, such as pass/fail or

proficient/basic/below-basic. This is a simpler outcome and a simpler measurement model should

suffice. This paper presents and evaluates the use of decision theory as a tool for classifying

examinees based on their item response patterns.

Measurement decision theory requires only one key assumption - that the items are independent.

Thus, the tested domain does not need to be unidimensional, examinee ability does not need to be

normally distributed, and one doesn't need to be concerned with the fit of the data to a theoretical

model as in item response theory (IRT) or in most latent class models. The model is attractive as

the routing mechanism for intelligent tutoring systems, for end-of-unit examinations, for adaptive

testing, and as a means of quickly obtaining the classification proportions on other examinations.
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Very few pilot test examinees are needed and, with very few items, classification accuracy can

exceed that of item response theory. Given these attractive features, it is surprising that the model

has not attracted wider attention within the measurement community.

Developed by Wald (1947), first applied to measurement by Cronbach and Gleser (1957), and

now widely used in engineering, agriculture, and computing, decision theory provides a simple

model for the analysis of categorical data. Isolated elements of decision theory have appeared

sporadically in the measurement literature. Key articles in the mastery testing literature of the

1970s employed decision theory (Hambleton and Novick, 1973; Huynh, 1976; van der Linden

and Mellenbergh, 1977) and should be re-examined in light of today's measurement problems.

Lewis and Sheehan (1990) and others used decision theory to adaptively select items. Kingsbury

and Weiss (1983), Reckase (1983), and Spray and Reckase (1996) have used decision theory to

determine when to stop testing. Most of the research to date has applied decision theory to

testlets or test batteries or as a supplement to item response theory and specific latent class

models. Notable articles by Macready and Dayton (1992), Vos (1997), and Welch and Frick

(1993) illustrate the less prevalent item-level application of decision theory examined in this

paper.

As background to the presented research, an overview and key concepts of the measurement

decision theory model are presented and illustrated using a binary classification (pass/fail) case

and a sample three item test. The research section presents an evaluation of the model by

examining the 1) classification accuracy of tests scored using measurement decision theory, 2)

different sequential testing procedures by comparing classification accuracy against that of the

best case IRT scenario, 3) the number of items needed to make a classification, and 4) the

number of examinees needed to satisfactorily calibrate measurement decision theory item

parameters.



Background

Overview

The objective is to form a best guess as to the mastery state (classification) of an individual

examinee based on the examinee's item responses, a priori item information, and a priori

population classification proportions. Thus, the model has four components: 1) possible mastery

states for an examinee, 2) calibrated items, 3) an individual's response pattern, and 4) decisions

that may be formed about the examinee.

There are K possible mastery states, that take on values mk. In the case of pass/fail testing, there

are two possible states and K=2. One usually knows, a priori, the approximate proportions for

the population of all examinees in each mastery state.

The second component is a set of items for which the probability of each possible observation,

usually right or wrong, given each mastery state is also known a priori,

The responses to a set of N items form the third component. Each item is considered to be a

discrete random variable stochastically related to the mastery states and realized by observed

values zN,. Each examinee has a response vector, z, composed of zi, z2, ... zN. Only dichotomously

scored items are considered in this paper.

The last component is the decision space. One can form any number of D decisions based on the

data. Typically, one wants to guess the mastery state and there will be D=K decisions. With

adaptive or sequential testing, a decision will be to continue testing will be added and thus there

will be D=K+1 decisions. Each decision will be denoted dk.



Testing starts with the proportion of examinees in the population that are in each of the K

categories and the proportion of examinees with each category that respond correctly. The

population proportions can be determined a variety of ways including from prior testing,

transformations of existing scores, existing classifications, and judgement. In the absence of

information equal priors can be assumed. The proportions that respond correctly can be derived

from a small pilot test involving examinees that have already been classified or transformations

of existing data. Once these sets of priors are available, the items are administered, responses (zi,

z2, zN) observed, and then a classification decision, dk, is made based on the responses to those

items.

In this paper, pilot test proportions are treated as probabilities and the following notation is used:

Priors

P(Ink)

P(znImk)

Observations

- the probability of a randomly selected examinee having a mastery state mk

- the probability of response zn given the k-th mastery state

- an individual's response vector zi, z2, zN where z e (0,1)

An estimate of an examinee's mastery state is formed using the priors and observations. By

Bayes Theorem,

P(n klz) c z k ) P(n k)
(1)

The posterior probability P(mklz) that the examinee is of mastery state mk given his response

vector is equal to the product of a normalizing constant (c), the probability of the response vector



given mk, and the prior classification probability. For each examinee, there are K probabilities,

one for each mastery state. The normalizing constant in (1),

1
C =

E F.(zImk) Pond
k=1

assures that the sum of the posterior probabilities equals 1.0.

Assuming local independence,

P(zlnik) =11P(ziimk)
i=1 (2)

That is, the probability of the response vector is equal to the product of the conditional

probabilities of the item responses. In this paper, each response is either right (1) or wrong (0)

and P(zi=0Imk) = 1 - P(z =1 l mk).

Three key concepts from decision theory are discussed next:

1 decision rules - alternative procedures for classifying examinees based on their response

patterns,

2. sequential testing - alternative procedures for adaptively selecting items based on an

individuals response pattern, and

3. sequential decisions - alternative procedures for determining whether to continue testing.

The model is illustrated here with an examination of two possible mastery states mi and m2 and

two possible decisions di and d2 which are the correct decisions for mi and m2, respectively. The

examples use a three item test with the item statistics shown in Table 1. Further, also based on



pilot test data, the prior classification probabilities are P(m1)=0.2 and P(m2)=1-P(m1) = 0.8.In the

example, the examinee's response vector is [1,1,0].

Table 1: Conditional probabilities of a correct
response, P(zi=llmk)

Item 1 Item 2 Item 3

Masters (m2)

Non-masters (m2)

.6

.3

.8

.6

.6

.5

Decision rules

The task is to make a best guess as to an examinee's classification (master, non-master) based on

the data in Table 1 and the examinee's response vector. From (2), the probabilities of the vector

z= [1,1,0] if the examinee is a master is .6*.8*.4 = .19, and .09 if he is a non-master. That is,

P(zIm1)=.19 and P(zIm2)=.09.

A sufficient statistic for decision making is the likelihood ratio

L(z)=
p(zI m2 )

p(zI m1)

which for the example is L(z)= .09/.19 = .47. This is a sufficient statistic because all decision

rules can be viewed as a test comparing L(z) against a criterion value X.

f d if L(z)>2.
ld L(z) < (3)



The value of X, reflects the selected approaches and judgements concerning the relative

importance of different types of classification error.

Maximum-likelihood decision criterion

This is the simplest decision approach and is based solely on the conditional probabilities of the

response vectors given each of the mastery states, i.e. P(z1m1) and P(z1m2). The concept is to

select the mastery state that is the most likely cause of the response vector and can be stated as :

Given a set of item responses z, make decision dk if it is most likely that mk generated z.

Based on this criterion, one would classify the examinee as a master - the most likely

classification. Using likelihood ratio testing, the decision rule is formula (3) with k = 1.0. This

criterion ignores the prior information about the proportions of masters and non-masters in the

population. Equivalently, it assumes the population priors are equal. With the example, few

examinees are masters, P(mk)=.20. Considering that the conditional probabilities of the response

vectors are fairly close, this classification rule may not result in a good decision.

Minimum probability of error decision criterion

In the binary decision case, two types of errors are possible - decide di when m2 is true or decide

d2 when mi is true. If one thinks of mi as the null hypothesis, then in terms of statistical theory,

the probability of deciding a person is a master, di when indeed that person is a non-master m2, is

the familiar level of significance, a and P(d21m2) is the power of the test, (3. When both types of

errors are equally costly, it may be desirous to maximize accuracy or minimize the total

probability of error, Pe. This criterion can be stated as:



Given a set of item responses z, select the decision regions which minimize the total

probability of error.

This criterion is sometimes referred to as the ideal observer criterion. In the binary case, Pe =

PAIInd + P(dj In2) and the likelihood ratio test in (2) is employed with

P(m )
A, = 1

1)(1712)

With the example, ?,----.25 and the decision is d2 - non-master.

Maximum a posteriori (MAP) decision criterion

The maximum likelihood decision criterion made use of just the probabilities of the response

vector. The minimum probability of error criterion also made use of the prior classification

probabilities P(m) and P(m). MAP is another approach that uses the available information:

Given a set of item responses z, decide dk if mk is the most likely mastery state.

In other words,

fd2 if P(m2Iz) / P(m1Iz) >1
1c11 i f P(m2Iz) / P(mlIz) <1

Since from equation (2), P(mklz)---c P(zImk) P(mk), MAP is equivalent to the minimum probability

of error decision criterion.



Bayes Risk Criterion

A significant advantage of the decision theory framework is that one can incorporate decision

costs into the analysis. By this criteria, costs are assigned to each correct and incorrect decision

and then minimize the total average costs. For example, false negatives may be twice as bad as

false positives. If c is the cost of deciding d, when rnj is true, then the expected or average cost B

is

B=(cl, c21 P(d2Imi)) P(1111) + (c12 P(d111n2) c22 P(d211n2)) P(m2)

and the criterion can be stated as

Given a set of item responses z and the costs associated with each decision, select dk to

minimize the total expected cost.

(4)

For two mastery states, the total expected cost can be minimized using the likelihood ratio test in

(2) with

(c
21

c
11

)P(m )
1

(c
12

c
22

)P(m
2

) (5)

This is also called the minimum loss criterion and the optimal decision criterion. If costs

c11=c22=0 and c12= c 21=1, then B is identical to Pe and this approach is identical to minimum

probability of error and to MAP. With cil=c22=0 and c21=2, c12=1, and the sample data, X=.50

and the decision is d2 - non-master.



Sequential testing

Rather than make a classification decision for an individual after administering a fixed number of

items, it is possible to sequentially select items to maximize information, update the estimated

mastery state classification probabilities and then evaluate whether there is enough information

to terminate testing. In measurement this is frequently called adaptive or tailored testing. In

statistics, this is called sequential testing.

At each step, the posterior classification probabilities p(mklz) are treated as updated prior

probabilities p(mk) and used to help identify the next item to be administered. To illustrate

decision theory sequential testing, again consider the situation for which there are two possible

mastery states mi and m2 and use the item statistics in Table 1. Assume the examinee responded

correctly to the first item and the task is to select which of the two remaining items to administer

next.

After responding correctly to the first item, the current updated probability of being a master is

.6*.2/(.6*.2+.3*.8) = .33 and the probability of being a non-master is .66 from formula (1).

The current probability of responding correctly is

P(z =1) = P(z =11m1)P(m1) +P(z =11m2)P(m2) (5)

Applying (5), the current probability of correctly responding to item 2 is P(z2=1)=.8*.33+ .6*.66

= .66 and, for item 3, P(z3=1)=.53. The following are some approaches to identify which of these

two items to administer next.



Minimum expected cost

This approach defines the optimal item to be administered next as the item with in the lowest

expected cost. Equation (4) provides the decision cost as a function of the classification

probabilities. If c1 1=c22=0 then

B=c21 P(d211n1) P(r111) c12 P(d11m2) P(%) (6)

In the binary decision case, the probability of making a wrong decision is one minus the

probability of making a right decision and the probabilities of making a right decision is by

definition, the posterior probabilities given in (1). Thus, with c 12= C21= 1 , the current Bayes cost is

B=1*(1-.33)*.33 + 1*(1-.66)*.66 = .44.1

Minimum expected cost is often associated with sequential testing and has been applied to

measurement problems by Lewis and Sheehan (1980), Macready and Dayton (1992), Vos (1997),

and others.

The following steps can be used to compute the expected cost for each item.

1. Assume for the moment that the examinee will respond correctly. Compute the posterior

probabilities using (1) and then costs using (6).

2. Assume the examinee will respond incorrectly. Compute the posterior probabilities using

(1) and then costs using (6).

3. Multiply the cost from step 1 by the probability of a correct response to the item

K K

The generalized formula for cost in this context is B = Ec P(m Iz)P(m, 1z)J
1=1 j =1



4. Multiply the cost from step 2 by the probability of an in correct response to the item

5. Add the values from steps 3 and 4.

Thus, the expected cost is the sum of the costs of each response weighted by the probability of

that response. If the examinee responds correctly to item 2, then the posterior probability of being

a master will be (.8*.33)/(.8*.33+.6*.66)=.40 and the associated cost will be 1*(1-.40)*.40+1*(1-

.60)*.60 =.48. If the examinee responses incorrectly, then the posterior probability of being a

master will be (.2*.33)/(.2*.33+.4*.66)=.20 and the associated cost will be 1*(1-.20)*.20+1*(1-

.80)*.80 =.32. Since the probability of a correct response from (5) is .66 the expected cost for

item 2 is .66*.48+(1-.66)*.32 = .42.

The cost for item 3 is .47 if the response is correct and .41 if incorrect. Thus, the expected cost

for item 3 is .53*.47+(1-.53)*.41 = .44. Since item 2 has the lowest expected cost, it would be

administered next.

Information Gain

This entire essay is concerned with the use of prior item and examinee distribution information in

decoding response vectors to make a best guess as to the mastery states of the examinees. The

commonly used measure of information from information theory (see Cover and Thomas, 1991),

Shannon (1948) entropy, is applicable here:

H(S)= E pk log2 pk
k=1

(5)

where pk is the proportion of S belonging to class k. Entropy can be viewed as a measure of the

uniformness of a distribution and has a maximum value when pk = 1/K for all k. The goal is to



have a peaked distribution of P(mk) and to next select the item that has the greatest expected

reduction in entropy, i.e.

H(S0) H(S) (6)

where H(S0) is the current entropy and H(Si) is the expected entropy after administering item I,

i.e. the sum of the weighted conditional entropies of the classification probabilities that

correspond to a correct and to an incorrect response

H(S i) = p(z 1=1) H(S ilz i=1) + p(z 1=0) H(S ilz i= 0)

This can be computed using the following steps:

(7)

1. Compute the normalized posterior classification probabilities that result from a correct and

to an incorrect response to item I using (1).

2. Compute the conditional entropies (conditional on a right response and conditional on an

incorrect response) using (5).

3. Weight the conditional entropies by their probabilities using (7).

Table 2 shows the calculations with the sample data.

15
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Table 2: Computation of expected classification entropies for
items 2 and 3.

Response
(zi)

Posterior
classification
probabilities

Item 2 Right P(m1)=.40

P(m2)=.60

Wrong P(m1)=.20

P(1112)=.80

Item 3 Right P(m1)=.38

P(11112)=.62

Wrong P(m1)=.29

P(m2)=-.71

Conditional
entropy P(;) H(S1)

.97

.72

.96

.87

.66

.33

.53

.47

.89

.92

After administering the first item, P(m1)=.33, P(m2)=.66, and H(S)=.91. Item 2 results in the

greatest expected entropy gain and should be administered next.

A variant of this approach is relative entropy which is also called the Kullback-Leibler (1951)

information measure and information divergence. Chang and Ying (1996), Eggen (1999), Lin

and Spray (2000) have favorably evaluated K-L information as an adaptive testing strategy.

The reader should note that, the expected entropy after administering item 3 would be greater

than H(S) and result in a loss of information. That is, the classification probabilities are expected

to become less peaked should item 3 be administered. As a result, this item shouldn't be

considered as a candidate for the next item. One may want to stop administering items when

there are no items left in the pool that are expected to result in information gain.



Maximum Discrimination

Item response theory adaptive testing is most effective when the next item to be administered is

the one with the most information at the cut score, the examinee's ability level, or the current

estimate of the examinees ability (Spray and Reckase, 1994). The analog here is to select the item

that best discriminates between the two most likely mastery state classifications. One such index

is

Mi = = mk )
log

p(zi = mk+1

where mk and mk+, are currently the two most likely mastery states. In the binary case, mk and

mk+1 are always ml and m2 and the item order is the same for all examinees. Here, item 2 would

be selected as the next item to be administered.

Sequential Decisions

This paper has discussed procedures for making a classification decision and procedures for

selecting the next items to be administered sequentially. This section presents procedures for

deciding when one has enough information to hazard a classification guess. One could make this

determination after each response.

Perhaps the simplest rule is the Neyman-Pearson decision criteria - continue testing until the

probability of a false negative, P(d21m1), is less than a preselected value a. Suppose a= .05 was

selected. After the first item, the probability of being a non-master is P(m11z) = .66. If the

examinee is declared a non-master, then the current probability of this being a false negative is

(1-.33). Because this is more than a, the decision is to continue testing.



A variant of Neyman-Pearson is the fixed error rate criterion - establish two thresholds, al and

a2, and continue testing until P(d21m1) < al and P(d11m2) < a2. Another variant is the cost

threshold criteria. Under that approach, costs are assigned to each correct and incorrect decision

and to the decision to take another observation. Testing continues until the cost threshold is

reached. A variant on that approach is to change the cost structure as the number of administered

items increases.

Wald's (1947) sequential probability ratio test (SPRT, pronounced spurt) is clearly the most

well-known sequential decision rule. SPRT for K multiple categories can be summarized as

P(N ) 1- 13

dk >P(ink-1) a

PON+, 13

"k P(mk ) 1- a

for k = K

for k =1

dk PP( (mi nk > 1 -a /3 and PP n
) 1 a

k < 13 for k = 2,3,...K-1

where the P(m)'s are the normalized posterior probabilities, a is the acceptable error rate, and 13

is the desired power. If the condition is not meet for any category k, then testing continues. In the

measurement field, there is a sizeable and impressive body of literature illustrating that SPRT is

very effective as a termination rule for IRT based computer adaptive tests (c.f. Reckase, 1983;

Spray and Reckase, 1994, 1996; Lewis and Sheehan, 1990; Sheehan and Lewis, 1992)



Methodology

This research addresses the following questions:

1. Does measurement decision theory result in accurately classified examinees?

2. Are the different sequential testing procedures using decision theory as effective as

maximum information item selection using item response theory?

3. How many items need to be administered to make accurate classifications? and

4. How many examinees are needed to satisfactorily calibrate measurement decision theory

item parameters?

These questions are addressed using two sets of simulated data. In each case, predicted mastery

states are compared against known, simulated true mastery states of examinees.

Examinees (simulees) were simulated by randomly drawing an ability value from normal N(0,1)

and uniform (-2.5, 2.5) distributions and classifying each examinee based on this true score. Item

responses were then simulated using Birnbaum's (1968) three parameter IRT model. For each

item and examinee, the examinee's probability of a correct response is compared to a random

number between 0 and 1. When the probability was greater than the random draw, the simulee

was coded as responding correctly to the item. When the probability was less, the examinee was

coded as responding incorrectly. Thus, as with real testing, individual simulees sometimes

responding incorrectly to items they should have been able to answer correctly.

The items parameters were based on samples of items from the 1999 Colorado State Assessment

Program fifth grade mathematics test (Colorado State Department of Education, 2000) and the

1996 National Assessment of Educational Progress State Eighth Grade Mathematics Assessment

(Allen, Carlson, and Zelenak, 2000).



For each test, a calibration sample of 1000 examines and separate trial data sets were generated.

The calibration sample was used to compute the measurement decision theory priors - the

probabilities of a randomly chosen examinee being in each of the mastery states and the

probabilities of a correct response to each item given the mastery state.

Key statistics for each simulated test are given in Table 3

Table 3: Descriptive statistics for
simulated tests

Simulated test

CSAP State NAEP

No of items in
item pool

54 139

Mean a .78 .94

Mean b -1.25 .04

Mean c .18 .12

Reliability for
N(0,1) sample

.83 .95

-.23.
Cut score(s) -.23 .97

1.65

Mastery states 2 4

The simulated state-NAEP draws from a large number of items and a very reliable test. The cut

scores correspond to the IRT theta levels that delineate state-NAEP's Below Basic, Basic,

Proficient and Advanced ability levels. The relatively small cell size for the Advanced level and

the use of four mastery state classifications provide a good test for measurement decision theory.

The CSAP is a shorter test of lower reliability and the sample of items has mean difficulty (mean

b) well below the mean examinee ability distribution. Classification categories are not reported

-18-
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for CSAP. The mastery/non-mastery cut score used in the study was arbitrarily selected to

correspond to the 40th percentile.

The accuracy of classifications using measurement decision theory relative to classifications

using item response theory and the accuracy of sequential testing models relative to IRT

computer adaptive testing were examined using these datasets. Accuracy was defined as the

proportion of correct state classifications. To determine the correct state classification, the

examinee's true score was compared to the cut scores. To determine the observed classification,

maximum a posterior (MAP) probabilities were used with the decision theory approaches and

thetas estimated using the Newton-Raphson iteration procedure outlined in Baker (2001) were

used with the IRT approach.

The reader should note that measurement decision theory approaches do not incorporate any

information concerning how the data were generated, or any information concerning the

distribution of ability within a category. The IRT baseline, on the other hand, was designed to

provide a best case scenario for that model. The data fit the IRT model perfectly. Adaptive IRT

testing used the items with the most information at the (usually unknown) true scores to

optimally sequence the test items.

Results

Classification Accuracy

A key question is whether use of the model will result in accurate classification decisions.

Accuracy was evaluated under varying test lengths, datasets, and underlying distributions. Test

lengths were varied from 3 items to the size of the item pool. For each test length, 100 different



tests were generated by randomly selecting items from the CSAP and NAEP datasets. For each

test, 1,000 examinees and their item responses were simulated.

The results for select test sizes with the CSAP are shown in Table 4 and all CSAP values are

plotted in Figure 1. There is virtually no difference between the accuracies of decision theory

scoring and IRT scoring with either the uniform or normal underlying ability distributions. With

the NAEP items, four classification categories, and normal examinee distributions, decision

theory was consistently more accurate than IRT scoring (see Figure 2). With uniform

distributions, IRT has a slight advantage until 25 items when the curves converge.

Table 4: Classification accuracy of simulated
examinations using MAP decision theory and
IRT scoring by item bank, test size and
underlying ability distribution.

uniform normal
size mato irt mars irt

CSAP items, 2 categories
5 .850 .842 .762 .752

10 .900 .892 .810 .804
15 .924 .914 .839 .834
20 .936 .926 .857 .853
25 .945 .936 .869 .865
30 .951 .942 .879 .877

State-NAEP items, 4 categories
5 0.513 0.623 0.61 0.539

10 0.638 0.694 0.68 0.635
15 0.705 0.742 0.72 0.682
20 0.745 0.766 0.755 0.724
25 0.773 0.787 0.774 0.75
30 0.8 0.802 0.791 0.772
35 0.823 0.818 0.805 0.79
40 0.838 0.827 0.813 0.799



Figure 1: Accuracy of decision theory (MAP),
and IRT scoring as a function of test length and
ability distribution for simulated tests based on
CSAP.
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Figure 2: Accuracy of decision theory (MAP),
and IRT scoring as a function of test length for
simulated tests based on state-NAEP.
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Sequential Testing Procedures

For this analysis, data sets of 10,000 normally distributed N(0,1) examinees and their responses

to the CSAP and state-NAEP items were generated. Using these common datasets, items were

selected and mastery states were predicted using three sequential testing approaches (minimum

cost, information gain, and maximum discrimination) and the baseline IRT approach.

Under the IRT approach, the items with the maximum information at the examinee's true score

were selected without replacement. Thus, the procedure was optimized for IRT.

As shown in Table 5, the minimum cost and information gain decision theory approaches

consistently out-performed the IRT approach in terms of classification accuracy. The fact that

the classification accuracies for these two decision theory methods are almost identical implies

that they tend to select the same items. Optimized to make fine distinctions across the ability

scale, the IRT approach is less effective if one is interested in making coarser mastery

classifications. The simple maximum discrimination approach was not as effective as the others,

but was reasonably accurate.



Table 5: Accuracy of sequential testing methods as a
function of maximum test length

Max No
IRTof items

Decision Theory Approaches

Max Disc Min Cost Info Gain
CSAP items, 2 categories

5 .810 .789 .836 .836
10 .856 .850 .862 .863
15 .869 .868 .880 .879
20 .882 .893 .889 .886
25 .890 .893 .897 .898

State NAEP items, 4 categories
5 .730 .630 .743 .742

10 .774 .711 .797 .793
15 .812 .775 .822 .818
20 .824 .815 .833 .832
25 .840 .835 .844 .844
39 ,W .845 .85 .852

Sequential decisions

After each item was administered above, Wald's SPRT was applied to determine whether there

was enough information to make a decision and terminate testing. Power and error rate where set

to al3= .05. Table 6 shows the proportion of examinees for which a classification decision could

be made, the percent of those examinees that were correctly classified, and the mean number of

administered items as a function of maximum test length using items from state-NAEP. With an

upper limit of only 15 items, for example, some 75% of the examinees were classified into one of

the 4 NAEP score categories. A classification decision could not be made for the other 25%.

Eighty-eight percent of those examinees were classified correctly into one of the 4 state-NAEP

categories and they required an average of 9.1 items. SPRT was able to quickly classify

examinees at the tails of this data with an underlying normal distribution.



Table 6: Proportion of examinees classified using
SPRT, information gain, and state-NAEP items, the
accuracy of their classifications, and the mean
number of administered items as a function of the
maximum number of administered items.

Max No of
items

Proportion
Classified Accuracy Mean #

of items
5 0.260 0.948 4.6

10 0.604 0.902 7.4
15 0.749 0.880 9.1
20 0.847 0.865 10.2
25 0.899 0.860 10.8
30 0.928 0.857 11.3
40 0.960 0.852 11.8
50 0.972 0.849 12.2

100 0.988 0.847 13.0

The proportions classified and the corresponding accuracy as a function of the maximum number

of items administered are shown in Figure 3. The proportion classified curve begins to level off

after about a test size limit of 30 items. Accuracy is fairly uniform after a test size limit of about

10 or 15 items.

Figure 3: Proportion of examinees classified and
the accuracy of those classifications as a function
of the maximum number of administered items
(state-NAEP items, four latent states, sequential
testing using information gain, sequential decisions
using SPRT).
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Calibration

Another key question for any measurement model is the sample size needed to obtain satisfactory

priors. With item response theory, the minimum acceptable calibration size is some 1000

examinees, which severely limits applications of the model.

The priors for the measurement decision theory model are the proportions of examinees in the

population in each mastery state, P(mk), and the probabilities of responding correctly (and

consequently the probabilities of responding incorrectly) given each mastery state, P(z,=1Imk).

These priors will usually be determined by piloting items with a calibration sample.

To determine the necessary number of calibration examinees, examinee classification accuracy as

a function of calibration sample size and test size was assessed. Samples sizes of

[20,30,40,50,60,70,80,90,100,200,300,400,500,600,700,800,900,1000] and test sizes of

[5,10,15,20,25,30,35,40,45] were examined using state-NAEP and CSAP items. Under each

condition, 100 tests were created by randomly selecting the appropriate number of items from the

selected item pool. These tests were then each administered to 1000 simulees and the accuracy of

the classification decision using MAP was determined.

Classification accuracy is usually best for tests calibrated on larger samples. In order to place the

observed accuracies on a common scale, the accuracy of each sample size condition was divided

by the accuracy of the corresponding 1000 calibration examinee condition to form a relative

accuracy scale.

Accuracy of the priors is also limited by the size of the smallest cell. For the CSAP, this was

always the non-masters (approximately 40% of the calibration sample). For NAEP, this was the

Advanced category (approximately 17%). Variations due to cell size were controlled by dividing
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the number of calibration examinees in the smallest cell by the number of items on the simulated

test. Thus, relative accuracy as a function of the number of calibration examinees per item in the

smallest cell was used to help evaluate the needed calibration sample size.

Table 7 shows the results for 100 random 30 item tests using state-NAEP items. The data under

the different test size conditions using state-NAEP items are quite similar and plotted in Figure 4.

In Figure 4, the x-axis is truncated at 3 subjects per item. Beyond that value, the curves are flat.

The results using CSAP were virtually identical. One can see from Figure 4 that relative accuracy

levels off as the number of calibration examinees in the smallest cell approximates a little more

than the test size. Thus, a random sample of only 25 to 40 examinees per cell would be needed to

calibrate a 25 item test.

Table 7: Accuracy by number of examinees per item in
the smallest cell using 100 random 30 items tests formed
from state-NAEP items
Sample smallest cell

size size
(a) f bl

accuracy

0

relative
accuracy

(dl

Examinees per
item in (b)

20 2 0.38 0.43 0.07
30 4 0.50 0.56 0.13
40 6 0.59 0.66 0.20
50 7 0.66 0.74 0.23
60 9 0.71 0.79 0.30
70 10 0.74 0.82 0.33
80 11 0.75 0.85 0.37
90 13 0.78 0.87 0.43

100 16 0.78 0.87 0.53
200 34 0.86 0.96 1.13
500 77 0.89 0.99 2.57

1000 163 0.89 1.00 5.43



Figure 4: Accuracy of tests formed from state-NAEP
items relative to tests calibrated with 1000 examinees
as a function of the number of calibration examinees
per item in the smallest cell.
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Discussion

3

In their introduction, Cronbach and Gleser (1957) argue that the ultimate purpose for testing is to

arrive at qualitative classification decisions. Today's decisions are often binary, e.g. whether to

hire someone, whether a person has mastered a particular set of skills, whether to promote an

individual. Multi-state conditions are common in state assessments, e.g. the percent of students

that perform at the basic, proficient or advanced level. The simple measurement model presented

in this paper is applicable to these and other situations where one is interested in categorical

information.

The model has a very simple framework - one starts with the conditional probabilities of

examinees in each mastery state responding correctly to each item. One can obtain these

probabilities from a very small pilot sample. This research demonstrated that a minimum cell

size of one examinee per item is a reasonable calibration sample size. The accuracies of tests



calibrated with such a small sample size are extremely close to the accuracies of tests calibrated

with hundreds of examinees per cell.

An individual's response patterns is evaluated against these conditional probabilities. One

computes the probabilities of the respOnse vector given each mastery level. Using Bayes'

theorem, the conditional probabilities can be converted to an a posteriori probabilities

representing the likelihood of each mastery state. Alternative decision rules were presented.

Using the maximum a posteriori, MAP, decision rule, this research found that the model was as

good as or better than three parameter item response theory in accurately classifying examinees.

Accuracy was also identical when making binary decisions using items from the Colorado State

Assessment Program. The model was noticeably more accurate than IRT when making

classifying examinees into one of four categories using items from state-NAEP. The

measurement decision theory model is especially attractive when the IRT assumptions are

violated or IRT cannot be applied.

This research examined three ways to adaptively, or sequentially, administer items using the

model. The traditional decision theory sequential testing approach, minimum cost, was notably

better than the best case possibility for item response theory. Two new approaches where

introduced. Information gain, which is based on entropy and comes from information theory, was

almost identical to minimum cost. A second, simpler approach using the item that best

discriminates between the two most likely classifications also fared better than IRT, but not as

well as information gain or minimum cost. The research also showed that with Wald's SPRT,

large percentages of examinees can be accurately classified with very few items. With only 25

sequentially selected items, for example, some 90% of the simulated state-NAEP examinees

were classified with 86% accuracy.



The research also showed that very few pilot test examinees are needed to calibrate the system.

One or two examinees per cell per item result in a test that is as accurate as one calibrated with

hundreds of pilot test examinees per cell. The results were consistent across item pools and test

lengths. The essential data from the pilot is the proportions of examinees within each mastery

state that respond correctly. One does not truly need a priori probabilities of a randomly chosen

examinee being in each mastery state. Uniform priors can be expected to increase the number of

needed items and not seriously affect accuracy given properly chosen stopping rules.

This is clearly a simple yet powerful and widely applicable model. The advantages of this model

are many -- the model yields accurate mastery state classifications, can incorporate a small item

pool, is simple to implement, requires little pre-testing, is applicable to criterion referenced tests,

can be used in diagnostic testing, can be adapted to yield classifications on multiple skills, can

employ sequential testing and a sequential decision rule, and should be easy to explain to non-

statisticians.

It is the author's hope that this research will capture the imagination of the research and applied

measurement communities. The author can envision wider use of the model as the routing

mechanism for intelligent tutoring systems. Items could be piloted with a few number of

examinees to vastly improve end-of-unit examinations. Certification examinations could be

created for specialized occupations with a limited number of practitioners available for item

calibration. Short tests could be prepared for teachers to help make tentative placement and

advancement decisions. A small collection of items from a one test, say state-NAEP, could be

embedded in another test, say a state assessment, to yield meaningful cross-regional information.

The research questions are numerous. How can the model be extended to multiple rather than

dichotomous item response categories? How can bias be detected? How effective are alternative

adaptive testing and sequential decision rules? Can the model be effectively extended to 30 or



more categories and provide a rank ordering of examinees? How can we make good use of the

fact that the data is ordinal? How can the concept of entropy be employed in the examination of

tests? Are there new item analysis procedures that can improve measurement decision theory

tests? How can the model be best applied to criterion referenced tests assessing multiple skills,

each with a few number of items? Why are minimum cost and information gain so similar? How

can different cost structures be effectively employed? How can items from one test be used in

another? How does one equate such tests? The author is currently investigating the applicability

of the model to computer scoring of essays. In that research, essay features from a large pilot are

treated as items and holistic scores as the mastery states.

Note

This research was sponsored with funds from the National Institute for Student Achievement,

Curriculum and Assessment, U.S. Department of Education, grant award R305T010130. The

views and opinions expressed in this paper are those of the author and do not necessarily reflect

those of the funding agency.
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